1,042 research outputs found

    Testbed for assessing the accuracy of interventional radiology simulations

    Get PDF
    International audienceThe design of virtual reality simulators, and more specifically those dedicated to surgery training, implies to take into account numerous constraints so that simulators look realistic to trainees and train proper skills for surgical procedures. Among those constraints, the accuracy of the biophysical models remains a very hot topic since parameter estimation and experimental validation often rely on invasive protocols that are obviously not suited for living beings. In the context of Interventional Radiology the procedures involve the navigation of surgical catheter tools inside the vascular network where many contacts, sliding and friction phenomena occur. The simulation of these procedures require complex interaction models between the tools and the blood vessels for which there is no ground truth data available for parametrization and validation. This paper introduces an experimental testbed to address this issue: acquisition devices as well as a data-processing algorithms are used to record the motion of interventional radiology tools in a silicon phantom representing a vascular network. Accuracy and high acquisition rates are the key features of this testbed as it enables to capture dynamic friction of non-smooth dynamics and because it could provide extensive data to improve the accuracy of the mechanical model of the tools and the interaction model between the tools and the blood vessel

    Impact of Soft Tissue Heterogeneity on Augmented Reality for Liver Surgery

    Get PDF
    International audienceThis paper presents a method for real-time augmented reality of internal liver structures during minimally invasive hepatic surgery. Vessels and tumors computed from pre-operative CT scans can be overlaid onto the laparoscopic view for surgery guidance. Compared to current methods, our method is able to locate the in-depth positions of the tumors based on partial three-dimensional liver tissue motion using a real-time biomechanical model. This model permits to properly handle the motion of internal structures even in the case of anisotropic or heterogeneous tissues, as it is the case for the liver and many anatomical structures. Experimentations conducted on phantom liver permits to measure the accuracy of the augmentation while real-time augmentation on in vivo human liver during real surgery shows the benefits of such an approach for minimally invasive surgery

    Printgets: an Open-Source Toolbox for Designing Vibrotactile Widgets with Industrial-Grade Printed Actuators and Sensors

    Get PDF
    International audienceNew technologies for printing sensors and actuators combine the flexibility of interface layouts of touchscreens with localized vibrotactile feedback, but their fabrication still requires industrial-grade facilities. Until these technologies become easily replicable, interaction designers need material for ideation. We propose an open-source hardware and software toolbox providing maker-grade tools for iterative design of vibrotactile widgets with industrial-grade printed sensors and actuators. Our hardware toolbox provides a mechanical structure to clamp and stretch printed sheets, and electronic boards to drive sensors and actuators. Our software toolbox expands the design space of haptic interaction techniques by reusing the wide palette of available audio processing algorithms to generate real-time vibrotactile signals. We validate our toolbox with the implementation of three exemplar interface elements with tactile feedback: buttons, sliders, touchpads

    Multimodality Imaging of Chronic Ischemia

    Get PDF
    Although ischemic cardiomyopathy is commonly caused by chronic obstructive coronary disease, the mechanism of the cause is still under investigation. We present echocardiographic strain, magnetic resonance, and histology findings in a chronic ischemia model in preclinical study. This case illustrates the features of multimodality imaging in chronic obstructive coronary disease and gives us great insight into understanding the mechanism of ischemic cardiomyopathy

    Role of ACE2 genetic polymorphisms in susceptibility to SARS-CoV-2 among highly exposed but non infected healthcare workers

    Get PDF
    We aim to evaluate the role of single-nucleotide polymorphisms of the angiotensin-converting enzyme 2 in susceptibility to SARS-CoV-2 infection. We included 28 uninfected but highly exposed healthcare workers and 39 hospitalized patients with COVID-19. Thirty-five SNPs were rationally selected. Two variants were associated with increased risk of being susceptible to SARS-CoV-2: the minor A allele in the rs2106806 variant (OR 3.75 [95% CI 1.23-11.43]) and the minor T allele in the rs6629110 variant (OR 3.39 [95% CI 1.09-10.56]). Evaluating the role of genetic variants in susceptibility to SARS-CoV-2 infection could help identify more vulnerable individuals and suggest potential drug targets for COVID-19 patients.This work was supported by Instituto de Salud Carlos III: [grant number AC17/00019,COV20/00349,PI18/00154,PT17/0019]; Merck, Sharp & Dohme: [Ref IISP 59181].S

    Collective plasmonic excitations in double-layer silicene at finite temperature

    Get PDF
    We explore the temperature-dependent plasmonic modes of an n-doped double-layer silicene system which is composed of two spatially separated single layers of silicene with a distance large enough to prevent the interlayer electron tunneling. By applying an externally applied electric field, we numerically obtain the poles of the loss function within the so-called random phase approximation, to investigate the effects of temperature and geometry on the plasmon branches in three different regimes: topological insulator, valley-spin polarized metal, and band insulator. Also, we present the finite-temperature numerical results along with the zero-temperature analytical ones to support a discussion of the distinct effects of the external electric field and temperature on the plasmon dispersion. Our results show that at zero temperature both the acoustic and optical modes decrease by increasing the applied electric field and experience a discontinuity at the valley-spin polarized metal phase as the system transitions from a topological insulator to a band insulator. At finite temperature, the optical plasmons are damped around this discontinuity and the acoustic modes may exhibit a continuous transition. Moreover, while the optical branch of plasmons changes non-monotonically and noticeably with temperature, the acoustic branch dispersion displays a negligible growth with temperature for all phases of silicene. Furthermore, our finite-temperature results indicate that the dependency of two plasmonic branches on the interlayer separation is not affected by temperature at long wavelengths; the acoustic mode energy varies slightly with increasing the interlayer distance, whereas the optical mode remains unchanged.Comment: 9 pages, 12 figure

    Software toolkit for modeling, simulation and control of soft robots

    Get PDF
    International audienceThe technological differences between traditional robotics and soft robotics have an impact on all of the modeling tools generally in use, including direct kinematics and inverse models, Jacobians, and dynamics. Due to the lack of precise modeling and control methods for soft robots, the promising concepts of using such design for complex applications (medicine, assistance, domestic robotics...) cannot be practically implemented. This paper presents a first unified software framework dedicated to modeling, simulation and control of soft robots. The framework relies on continuum mechanics for modeling the robotic parts and boundary conditions like actuators or contacts using a unified representation based on Lagrange multipliers. It enables the digital robot to be simulated in its environment using a direct model. The model can also be inverted online using an optimization-based method which allows to control the physical robots in the task space. To demonstrate the effectiveness of the approach, we present various soft robots scenarios including ones where the robot is interacting with its environment. The software has been built on top of SOFA, an open-source framework for deformable online simulation and is available at https://project.inria.fr/softrobot

    Identification of miRSNPs associated with the risk of multiple myeloma

    Get PDF
    Accepted articleMultiple myeloma (MM) is a malignancy of plasma cells usually infiltrating the bone marrow, associated with the production of a monoclonal immunoglobulin (M protein) which can be detected in the blood and/or urine. Multiple lines of evidence suggest that genetic factors are involved in MM pathogenesis, and several studies have identified single nucleotide polymorphisms (SNPs) associated with the susceptibility to the disease. SNPs within miRNA-binding sites in target genes (miRSNPs) may alter the strength of miRNA-mRNA interactions, thus deregulating protein expression. MiRSNPs are known to be associated with risk of various types of cancer, but they have never been investigated in MM. We performed an in silico genome-wide search for miRSNPs predicted to alter binding of miRNAs to their target sequences. We selected 12 miRSNPs and tested their association with MM risk. Our study population consisted of 1,832 controls and 2,894 MM cases recruited from seven European countries and Israel in the context of the IMMEnSE (International Multiple Myeloma rESEarch) consortium. In this population two SNPs showed an association with p<0.05: rs286595 (located in gene MRLP22) and rs14191881 (located in gene TCF19). Results from IMMEnSE were meta-analyzed with data from a previously published genome-wide association study (GWAS). The SNPs rs13409 (located in the 3UTR of the POU5F1 gene), rs1419881 (TCF19), rs1049633, rs1049623 (both in DDR1) showed significant associations with MM risk. In conclusion, we sought to identify genetic polymorphisms associated with MM risk starting from genome-wide prediction of miRSNPs. For some mirSNPs, we have shown promising associations with MM risk. What's new? Even though deregulation of miRNA expression has been associated with human cancers little information is available regarding their relation with MM susceptibility. We performed an in silico genome-wide search for miRSNPs and selected the most promising ones for an association study. The SNPs with the strongest associations with MM risk are localized in genes which have never been related with MM.This work was partially funded by: intramural funds of German Cancer Research Center (DKFZ), Grant ref. HUS412A1271 from the “Gerencia Regional de Salud de la Junta de Castilla y Léon”. This work was supported by grants from the Instituto de Salud Carlos III (Madrid, Spain; PI12/02688). Catalan Government DURSI grant 2014SGR647 and Instituto de Salud Carlos III, co7funded by FEDER funds –a way to build Europe– grants PI11701439 and PIE13/00022info:eu-repo/semantics/publishedVersio

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore